比的基本性质教学设计和教学反思(通用11篇)

  在社会发展不断提速的今天,课堂教学是我们的任务之一,反思过往之事,活在当下之时。那么反思应该怎么写才合适呢?下面是小编收集整理的比的基本性质教学设计和教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

比的基本性质教学设计和教学反思(通用11篇)

  比的基本性质教学设计和教学反思 1

  教学目的:

  1、 通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

  2、 通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

  3、使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

  教学重点:理解比的基本性质。

  教学难点:掌握化简比的方法。

  教学过程:

  一、复习。

  1、什么叫做比?比的各部分名称是什么?

  2、比与除法和分数有什么关系?

  二、新授

  1、口答:

  (1) 6︰9=( )÷ 9=18 ÷( )=18 ︰27

  (2) 6︰9= = =( )︰3

  2、引导学生讨论研究,寻找规律。

  3、推导出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

  4、明确比的基本性质的作用。

  5、 教学例1

  (1) 出示例题:把下面各比化成最简单的整数比。

  15∶10 180:120

  (2)学生审题,说题目的要求(两个,一是化成整数比,二必须是最简的.)。

  (3)把 :0.75∶2化成最简整数比。

  (4) 归纳化简比的方法。

  三、练习

  1、基本练习。

  2、拓展练习。

  四、全课小结。

  今天我们学习了什么知识?比的基本性质可以应用在哪些方面?

  五、布置作业。

  P51的“做一做”和练习十一的第6题。

  板书设计

  一、 基本性质

  二、 作用

  三、 化简方法

  教学反思

  上完《比的基本性质》,我反复在思考一个问题:学生学习数学知识有一个很重要的基础那就是已有的知识,已有的知识是学生进行数学学习的重要资源。

  这节课我是这样设计的,充分利用学生的已有知识,从比与除法、分数的关系以及商不变的性质和分数的基本性质等知识,通过让学生联想、猜测、观察、类推、验证方法探讨比的基本性质,介于复习比较充分,新课开展也很顺利,在我或其它同学的引导下,大部分学生思维都能迅速打开,得出多种验证比的基本性质的方法,但在这个环节中,可能是有听课的老师在,学生有些拘谨,担心回答错误不敢积极主动举手,有的站起来回答紧张的老是重复。

  学习概念的最终目的是为了运用概念来解决实际问题,心里学原理告诉我们,概念一旦获得,如不及时巩固,就会被遗忘。利用概念解决问题其实就是进一步巩固概念知识,只有把学到的知识运用到实践中去,学习才是有意义,本课中应用比的基本性质化简比,需要用到找最大公约数和最小公倍数,而且要求看到一组数能迅速看出最大公约数和最小公倍数,相当一部分学生对这个知识点只知道方法,动手运用起来还需思考一会儿,遇到稍大的数甚至看不出来有哪些公约数,这样以来对做题速度大打折扣,今后还需加强这方面的练习。克服这个小障碍,化简比的教学我采用尝试法,由学生尝试化简,遇到问题小组共同探讨,找到化简方法,通过板演,方法还真不少,除了常规方法,还可以求比值,有人干脆把后项直接化成1.。不管采用那一种方法,只需符合规律,都给予充分的肯定,尊重了学生的情感、态度价值观,使学生从中体会到成功的喜悦,提高自己的学习兴趣。

  上学期使用导学自主的方法,现在使用了电化教学设备,两者的结合应用有些生拉硬套,不由自主的就会顾此失彼。这里还是使用时间较短,两者有机完美结合的方法经验欠缺,以后还需不断学习,加上个人摸索,争取把这种模式尽早高效应用于教学当中。

  比的基本性质教学设计和教学反思 2

  教学目标:

  1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

  2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

  3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

  教学重点:

  探索并掌握比例的基本性质。

  教学难点:

  根据乘法等式写出正确的比例。

  教学准备:

  多媒体课件

  整体设计说明:

  本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

  教学过程

  一、旧知铺垫导入。

  1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  2、比和比例有什么区别?

  【设计意图】

  注重从学生已有的知识出发,为新课做好铺垫。

  二、自主探究

  过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

  【设计意图】

  组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

  三、反馈练习。

  指出下面比例的外项和内项。(投影出示)

  先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

  【设计意图】

  这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

  四、探究比例的基本性质

  (1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

  (2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

  (3)继续提出:是不是所有的比例都具有这样的`性质,举例验证,最后得出结论。

  (4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

  【设计意图】

  这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

  五、巩固练习

  1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

  2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

  (学生独立完成后,用展示台展示)

  3、根据比例的基本性质,在( )里填上适当的数。(投影出示)

  六、全课总结:

  这节课你有什么收获。

  【设计意图】

  关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

  七、拓展练习:把下面的等式改写成比例。

  3×40=8×15

  比的基本性质教学设计和教学反思 3

  一、教学目标

  1.知识与技能目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

  2.过程与方法目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

  3.情感态度价值观目标:通过教学,使学生养成与人合作的意识,并能与他人互相交流思维的过程和结果。

  二、教学重难点

  重点:理解比的基本性质,掌握化简比的方法。

  难点:理解化简比与求比值的不同。

  三、教学过程

  尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是比的基本性质,下面我将正式开始我的试讲。

  上课,同学们好,请坐。

  【导入】

  同学们,你们都喜欢看名侦探柯南吗?这一天柯南又破案了,我们一起来看一看:

  某珠宝店发生了一起失窃案。小偷在现场只留了一个脚印,柯南根据脚印的长为25cm,就果断推断出了小偷的身高是175cm。

  你们想知道他是如何推断出来的吗?原来根据科学的验证,人的脚长比人的身高等于1:7,你们知道柯南到底运用了怎样的数学知识来破获此案的呢?

  想不想成为像柯南一样的小神探老师,相信通过这节课的学习你们能了解其中的奥秘,这节课就让我们一起走进数学王国,去探究比的意义。

  【新授】

  活动一:

  上节课我们一起认识了比,谁来向大家分享一下比到底代表着怎样的意义呢?请你来说,对学过的知识掌握的非常扎实,请坐。两个数的比表示两个数相除。那我们一起来看一看这个6:8就等于对,6÷8等于6/8,能够约分等于3/4,所以比值是3/4。我们带来看一看12 : 16等于12÷16,所以比值是12 / 16约分3/4。

  我们一起看一看,这两个比它们之间有什么区别和联系呢?请你来说观察的非常细致,它们的比值相等,谁还有别的发现,请你来说。真是一个爱动脑筋的好孩子,请坐。6:8,前项和后项都乘2,就变成了12 : 16。

  同学们还记得我们之前学过的商不变的规律吗?谁来说一说。请你来说。说的非常准确,请坐,被除数和除数同时乘或除以一个不为零的数,商不变。那我们比如6÷8被除数和除数同时乘2,也就是6x2÷括号里面的8x2等于12÷16。同样的,我们的被除数和除数同时除以2,也就是6÷8,等于(6÷2)÷(8÷2)=3÷4

  活动二:

  那我们比中是否有类似的规律呢?我们一起来探究一下请同学们以四人为一组思考并注意以下几个问题,根据比与除法之间的关系,以及除法商不变的规律,来思考6:8与12 : 16之间有怎样的关系?二6:8与3:4之间又有什么关系呢?你还有什么发现?带着这几个问题,先独立思考,再小组合作,老师相信小组的力量是强大的,讨论完成以端正的坐姿来自于老师,看哪个小组的发现又多又好。开始。

  老师看同学们都已经做的很端正了。哪位同学愿意向大家分享一下你们小组的讨论成果?老师看一组的同学手举的像小树林一样,1#3同学请你来说。思路非常清晰,请坐。

  利用比和除法的关系来研究6÷8写成比的形式,就是6:8。而(6x2)÷(8x2)写成比的形式就是按括号里面的6×2:括号里面的8x2。又因为我们两个数的比表示两个数相除,而它们之间是相等的关系,除法算式是相等的关系,所以比值也相等,我们用等号来连接。接下来继续,12÷16写成比的`形式就是12 : 16。同样他们除法算式是相等的关系,由此得到它们之间的比值也是相等的,所以用等号来连接。

  其他小组还有不同的发现吗?二组同学请你来说。说的非常有条理,请坐。6÷8写成比的形式,就是6:8而6÷2,除以括号里面的8÷2,写成比的形式就是括号里面的6÷2,比括号里面的8÷2。又因为这两个除法算式结果相同,也就是啊,它们的比值是相等的,所以用等号来连接。最后3÷4用比的形式就是按3:4,同样比值相等,我们继续用等号来连接。

  我们一起仔细观察一下我们刚刚的探索的过程,你有哪些发现?又能得到怎样的结论呢?谁来试一试?请你来说多么了不起的发现,同学们掌声送给这位同学。

  比的前项和后项同时乘或除以一个相同的数,比值不变。那同学们想一想,这个相同的书能为零吗?对呀,当然不能为零,因为在除法算式中,除数不能为零。同学们可真棒,这么快就探索出了比的这么重要的规律。其实这就是我们这节课所要学习的内容,比的基本性质。

  活动三:

  刚刚我们是根据比和除法之间的关系探索比的基本性质,你能根据比和分数的关系研究比中的规律吗?

  同桌之间相互合作,来试一试。老师看同学们都已经探索完了,那你们对比的基本性质理解的怎么样啦?在生活中我们根据比的基本性质,可以将比化成最简的整数比,前项和后项只有公因数1是最简单的整数比。

  观察一下黑板上这些内容,以上就是本节课所要学习的比的基本性质。

  【巩固练习】

  接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕。

  神舟五号搭载了两面联合国国旗。你也是啊,长15cm,宽十厘米,另一面长180cm,宽120cm。那这两面联合国国旗长和宽的最简整数比分别是多少呢?同学们赶紧来算一算。老师看,同学们都已经完成了,谁来说一说你是如何计算的?

  请你来说思路非常清晰,请坐,长与宽的比就是15 :10。因为15和十的最大公约数是五,所以前项和后项同时除以五,等于3:2,这就是它们的最简整数比。而180 : 120,两个数之间的对大姑约说啥60,所以前项和后项同时除以60。也得到了最简整数比是3:2。

  看来这么简单的问题已经难不倒大家了,我们再来看一看1/6:2/9,求它的兑奖比谁来说一说你的思路。

  请你来说。说的非常清晰,请多因为分母六和九的最小公倍数是18,所以同时两边前项和后项同时乘18。得到最简比是3:4。

  那0.75 :2呢?谁来说一说你的想法?请你来说小脑袋可真聪明,请坐。先将0.75化为整数,小数点儿,向右移动两位乘100,所以前项和后项同时乘100,变成75 : 200。

  然后再将它们化简为最简单的整数比。也就是说,当一个比的前项和后项不是整数时,我们要先将它化为整数,再化为最简的整数比。看来同学们对这节课的知识掌握的非常扎实了。

  【课堂小结】

  不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?

  班长你手举得最高你来说,他说啊通过本节课学习了比的基本性质,也就是比的前项和后项同时乘或除以一个相同的数,比值不变,0除外。看来啊本节课上特听讲非常认真,请坐!同学们在本节课上听讲非常认真,表现得都非常积极,老师给大家点一个大大的赞,希望同学们继续保持!

  【作业布置】

  那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识测量一下书桌的长宽,看一看他们的比值是多少。下节课一起来交流讨论一下。

  本节课就先上到这,下课,同学们再见!

  比的基本性质教学设计和教学反思 4

  教学内容:义务教育教科书六年级上册第50-51页。

  教学目标:

  1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。

  2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  3、通过自主探究、合作交流等活动,发展学生概括推理能力。 教学重点:掌握化简比的方法,能正确地把一个比化成最简整数比。教学难点:理解并掌握比的基本性质。 教具学具:课件。 教学过程:

  一、回顾旧知。

  1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”

  2、比与除法和分数有什么关系?。 比

  前项

  :(比号) 后项

  比值 除法

  被除数 ÷(除号) 除数 商 分数

  分子 -(分数线)分母 分数值

  二、探究新知。 探究一:比的基本性质

  1、同学看这个除法算式:

  它们是正确的吗?为什么?运用了除法的什么性质?

  2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?

  3、根据比与分数的关系,我们还能怎么研究比的规律?

  设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。:

  4、即时练习,强化巩固

  在比的基本性质中,大家觉得要注意什么?让我们一起来看看: (1).根据108:18=6,说出下面各比的`比值。 54:9=(6) 216:36=(6)10800:1800=(6) (2).判断并说明理由。

  (1)6:7=(6×0):(7×0)=0 (2)1:2=(1+2):(2+2)=0.75 (3)2:8=2:(8÷2)=0.5探究二:根据比的性质我们能做什么?(化简比)

  1、明确什么是“最简整数比”。

  出示一些比,让学生说说哪些是整数比,哪些是最简整数比。

  2、出示例题,明确问题。

  例1:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?

  分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)

  学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。

  那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。

  3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?

  出示例题,全班讨论猜想。 学生独立完成。

  集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”

  探究三:一个比中有分数,又有小数该怎么化简呢?

  3出示0.125:,学生讨论,汇报结果。

  8设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究

  二、三突破本节课的难点。:

  三、强化新知,达标检测。

  通过数学课本51页“做一做”,强化认识。 32:16 48:40 0.15:0.3 5173: : 66128设计意图:强化训练:

  四、总结评价

  这节课你有什么收获?还有什么疑问?

  比的基本性质教学设计和教学反思 5

  教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题

  教学目标:

  1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

  2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

  3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

  教学重点和难点 :

  1.理解并掌握比例的基本性质。

  2.探究、发现比例的基本性质。

  教学准备:多媒体课件

  教学过程:

  一、复习旧知

  1.师:同学们,上节课我们学习了比例,什么叫做比例? 生:表示两个比相等的式子叫作比例。 2.师:如何判断两个比能否组成比例?生:化简比、求比值。

  3.判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7 生1:因为 4∶8 = 1∶2

  3∶6 =1∶2

  所以 6∶10 = 9∶15 生2: 因为 20∶5 = 4∶1

  28∶7 = 4∶1

  所以 20∶5=28∶7.

  (学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

  [设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

  二、探究比例的.基本性质 1.教学例4 请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:?把原来的三角形按几比几来缩小的?

  ?两个三角形的底和高分别是多少? ?你能根据图中的数据写出比例吗? 学生独立完成,然后汇报。 2.认识比例的项

  (1)观察这几组比例,它们有什么共同点?

  说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。 (2)结合6:3=4:2具体说一说

  在比例6:3=4:2中,组成比例的四个数“

  6、

  3、

  4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

  (3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

  3.探究比例的基本性质

  认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

  (2)6×2=3×4,两个外项的积等于两个內项的积。 4.验证 是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

  (1)与同桌每人写出一个比例,交换验证。

  (2)全班交流:有没有谁举出的比例不符合这个规律? 5.如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)6.小结

  其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的积,这叫作比例的基本性质。(板书) 学生齐读比例的基本性质.7.如果把比例6:3=4:2改写成分数形式,可以怎么改写? (1)在这里,谁是内项,谁是外项?

  (2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢? (3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。 8.教学“试一试”

  (1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

  (2)应用比例的基本性质判断能否组成比例

  (3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

  三、巩固练习

  1.完成“练一练”第1题。 (1)从表中你知道哪些信息? (2)从表中选择两组数据,写出一个乘积相等的式子。

  追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

  学生独立完成,教师巡视。

  交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?

  2、练习七第2题

  (1)下面四个数

  5、

  7、15和21可以组成比例吗?你是怎样想的? (2)学生独立完成,然后观察能写出的有什么规律?

  说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

  (3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

  3.任意从1-10中,写出4个数,判断能否组成比例?

  与同桌合作完成。一个写,另一个判断。 4.我是小法官,对错我来判。

  (1)在比例中,两个外项的积减去两个内项的积,差是0。 ( ) (2)如果4a=3b,(a和b均不为0),那么a:b=4:3。 ( )(3)2:3=9:6 ( ) (4)因为3×10=5×6,所以3:5=10:6。 ( ) 5.完成“练一练”第2题

  (1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。 (2)学生独立完成第2小题。

  四、全课总结

  今天我们学习了什么内容?你有什么收获?

  比的基本性质教学设计和教学反思 6

  教学目标:

  1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。

  2、培养学生的观察能力、判断能力

  教学重点:引导学生观察、讨论、试算,探究比例的基本性质。

  教学难点:应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学过程:

  一、激趣导入

  1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)

  2、还是让老师给你点提示吧!

  课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。

  3、现在知道是什么了吧!课件出示:扑 克牌

  (设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑 克牌激发学生的兴趣。)

  二、探究新知

  (一)我们今天这堂课研究的数学问题就跟扑 克牌有关。你们都知道扑克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K

  1、同学们你们都学过比例,请同学们用最快的速度从这13个数字中选择你所需要的数字来写出一个比例。

  2、学生汇报写出的比例并说明理由。

  3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页最后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)

  4、就学生汇报的比例,找出内项与外项。

  (设计说明:通过一个写比例的小活动,一是复习了比例的`意义,二是教学了内项与外项。)

  (二)在刚才同学们写比例的过程中,老师发现同学们的脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)

  1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)

  课件出示:

  冠军攻略

  参赛者:王老师,全班同学

  规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)

  2、第一轮:6、8、9、12

  (老师比学生提前写完,并由学生验证,得出老师胜)

  第二轮:3、5、4、8

  (老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3

  (老师比学生提前写完比例,并由学生验证,老师胜)

  (设计说明:由扑 克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)

  3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的比例的内项与外项,小组交流讨论,看看有什么发现?

  4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”

  5、师讲解如何很快的判断4个数能否组成比例。

  (设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)

  看样子,同学们对新知掌握的不错,愿意接受挑战吗?

  (三)练习运用。

  1、应用比例的基本性质,判断下面哪组中的两个比可以组成比例

  6∶3和8∶50 2∶2.5和4∶50

  2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?

  指出:2.4与40的乘积等于1.6与60的乘积。

  三、课堂巩固,练习提升

  1、用你喜欢的方法来判断哪组中的两个比能否组成比例。

  (1)14:21和6:9 (2)3/4:1/10和15/2:1

  (3)9:12和12:15 (4)1.4:2和7:10

  2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)

  3、根据比例的基本性质,在括号里填上合适的数。

  8:2=24:( ) ( )/15=4/5 1.5:3=( ):3.4 48:( )=3.6:9

  四、实践活动题

  8:A=B:1.5,那么A和B可能是( )和( )

  如果A是小数,那么A可能是( ),B可能是( )。

  如果A-B=1,那么A可能是( ),B可能是( )

  如果A+B=7,那么A可能是( ),B可能是( )

  (设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)

  五、全课总结

  通过这节课的学习,你有哪些收获?

  比的基本性质教学设计和教学反思 7

  教学目标

  使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质,能够正确地运用比的基本性质,把比化成最简单的整数比;通过数学培养学生的抽象概括能力和迁移类推的能力。渗透转化的数学思想,并使学生认识到事物之间都是存在内在的联系的。

  教学重点和难点

  1、理解比的基本性质

  2、正确运用比的基本性质把比化成最简单的整数比。

  教学过程

  一、师:在前面的学习中我们学习了比的意义,谁来说出什么是比?

  师:比与我们学过的那些知识有联系?有什么联系?

  师:在以前学习除法时,我们学习了商不变的性质,还学习了分数的`基本性质,大家还记得吗?谁来说一说?

  师:看来大家对前面学过的知识掌握得比较好。

  (导入新课)

  二、师:同学们,大家有没有想过,既然比与分数与除法有很多关系,分数中有分数基本性质,除法中有商不变的性质,那么比会不会也有自己的性质呢?如果有,会是什么呢?

  师:大家想一想这个猜想有没有研究的价值?

  师:所有的猜想都需要一个验证的过程才能最终被我们接受,现在就请同学们利用以前学过的知识来验证这一猜想。请举例验证。

  师:这位同学说得怎样?他不但举了例子来验证,而且为了使自己的例子更有说服力,还举了不同的例子进行验证。非常好,还有谁想汇报?

  师:是吗?同学们想不想听一听这位同学的高见?

  师:这位同学运用了以前学过的知识也证明了猜测是正确的。非常好!通过大家的验证,看来这个猜想是完全成立的,那大家还有没有其他问题?

  师:这位同学问的非常好,对呀,到底是为什么呢?谁来回答?

  师:大家同意吗?

  师:今天我们依靠自己的力量验证了数学中一个非常重要的性质---比的基本性质。请同桌互相说一说什么是比的基本性质?

  三、1.师:我们在学分数的基本性质时,利用它化简分数,约分、通分,其实我们学习比的基本性质也可以用来化简比,把比化成最简整数比,知道什么是最简整数比吗?

  师:能举例说明吗?比如180:120化成最简整数比是什么?

  师:怎么化简的?根据是什么?

  教师根据学生的讲述板书:

  180÷120=(180÷60):(120÷60)=3:2

  2.师:大家都会了吗?那老师考一考大家行吧?出示(1)48:40

  (2):出示教材中的一组分数和分数、小数和小数、分数和小数、分数和整数、整数和小数的对比练习,请大家独立化简,指名板演。

  师:上面几位同学做得对吗?为什么这样做?能说一说理由吗?根据是什么?

  师:看来大家对这部分知识掌握的的确非常好了。

  四、这节课我们重点研究了什么?你有什么收获?运用比的基本性质应注意什么?

  五、人教版小学数学六年级上册第47--48页练习.十一第1、3

  板书设计

  比的基本性质

  比的前项与后项同时乘或除以同一个数(0除外),比值不变。

  180÷120=(180÷60):(120÷60)=3:2 →最简整数比

  同时除以这两个数的最大公因数。

  比的基本性质教学设计和教学反思 8

  教材分析

  《比的基本性质》属于数学概念教学。它是在学生学习了商不变的性质、分数的基本性质及理解比的意义,能正确求比值的基础上进行教学的。它既是对前面所学知识的巩固应用,也为学生今后学习比例打下坚实的基础。本节课的知识目标是:使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。能力目标是:通过学习,培养学生的迁移类推能力和抽象概括能力。情感态度价值观目标:教学中,鼓励学生在教师创设的情境中主动地建构概念,应用概念,从而培养学生的探究意识,在活动中体验成功的快乐。本课的教学重点是理解比的的基本性质,教学难点是应用比的基本性质化简比。

  学情分析

  学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。

  教学目标

  1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。

  2、培养学生的抽象概括能力。

  3、渗透转化的数学思想。

  教学重点和难点

  教学重点:理解比的基本性质,掌握化简比的方法。

  教学难点:掌握化简比的方法。

  教学过程

  活动一

  1、出示例1,出示例1,让学生解答。

  2、教学比例的基本性质

  (1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?

  生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  (2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)

  ①根据分数、比、除法的关系验证。

  ②根据比值验证。

  ......

  ③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。

  ④总结比的基本性质,为什么强调0除外呢?

  活动二

  1、教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?

  比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)

  2、根据你自己的理解,能说一说什么是最简单的整数比吗?

  (前项和后项是互质数。)

  3、请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。

  让学生试做后,总结方法。

  4、出示例1(2)①1/6:2/9②0.75:2

  学生先讨论方法,再试做。

  5、小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。

  6、化简比与求比值有什么不同?

  7、质疑

  活动三

  1、做一做46页化简比。

  2、48页第4题

  教学反思

  比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的.基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!

  注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。

  “兴趣是的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。

  教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点和概念上表述更准确。

  比的基本性质教学设计和教学反思 9

  [教学目标]

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  [教学重点]比例的意义和基本性质.

  [教学难点]应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  [教学过程]

  1.什么叫做比?2.什么叫做比值?

  (二)求下面各比的比值.12∶164.5∶2.710∶6

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以用等号连接.教师板书:4.5∶2.7=10∶6

  二、新授教学.

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式80∶2=200∶5.

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)教师提问:什么叫做比例?组成比例的关键是什么?

  4.练习:下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15(2)20∶5和1∶4(3)0.6∶0.2和30:10

  5.填空(1)如果两个比的比值相等,那么这两个比就()比例.

  (2)一个比例,等号左边的比和等号右边的比一定是()的.

  ↓1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)80∶2=200∶5

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?以80∶2=200∶5为例,指名来说明.

  外项积是:80×5=400内项积是:2×200=400

  4.学生自己任选两三个比例,计算出它的外项积和内项积.

  5.教师明确:在比例里,两个外项的'积等于两个内项的积.这叫做比例的基本性质.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.在6∶5=30∶25这个比例中,外项是()和(),内项是()和().

  根据比例的基本性质可以写成()×()=()×().

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  3.0.5∶0.2和3:14.1/2:4/15和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)2、3、4和6

  80∶2=200∶5表示两个比相等的式子叫做比例.

  组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.

  在比例里,两个外项的积等于两个内项的积。

  比的基本性质教学设计和教学反思 10

  课题二:比的基本性质(a)

  教学内容

  教科书第48页例1及相应的“做一做”,练习十二的第5~9题。

  教学目的

  使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。

  教具准备

  投影仪。

  教学过程

  一、复习

  1.什么叫做比和比值?

  2.比和除法、分数有什么联系和区别?引导学生归纳总结出下表:

  比

  前项

  ∶(比号)

  后项

  比值

  除法

  被除数

  ÷(除号)

  除数

  商

  分数

  分子

  ──(分数线)

  分母

  分数值

  3.商不变性质是什么?分数的基本性质呢?

  引导学生回忆商不变性质和分数的基本性质。教师将这两个性质板书在黑板上:

  商不变性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  分数的基本性质:分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。

  二、新课

  1.引入新课。

  先在黑板上写出三个分数:、.

  教师:这三个分数相等吗?为什么?

  引导学生想分数值,因为这三个分数的值都是0.75,所以这三个分数相等。

  教师:还有其他方法说明它们相等吗?

  (根据分数的基本性质,和都可以化简成,所以这三个分数都相等。)

  教师指出:在除法中有商不变的性质,在分数中有分数的基本性质,那么比有没有类似的性质呢?这就是这节课我们要学习的内容。

  板书课题:比的基本性质

  2.教学比的基本性质。

  在黑板上把三个分数、分别改写成比的形式3∶4、6∶8、9∶12.

  提问:这三个比相等吗?为什么?

  学生:这三个比相等,因为它们的比值都是(0.75).

  教师用等号连结三个比(3∶4=6∶8=9∶12),提问:在这个式子中的三个比,同学们看到什么变了?什么没有变?

  教师引导学生观察后指出:为什么这几个比的前项、后项都变了,而它们的比值却不变呢?前项和后项的变化有没有规律呢?下面我们一起来探讨这个问题。

  引导学生对等式(3∶4=6∶8=9∶12)进行分析,寻找规律。

  先引导学生根据商不变性质从左往右进行观察。

  教师板演:3∶4=(3×2)∶(4×2)=6∶8

  3∶4=(3×3)∶(4×3)=9∶12

  6∶8=(6×1.5)∶(8×1.5)=9∶12

  提问:请认真观察这些式子,谁能用一句话把其中的规律表达出来?

  引导学生得出:比的前项和后项都乘相同的数,比值不变。

  再引导学生从右往左进行观察,归纳分数的基本性质。

  板书:

  6∶8=(6÷2)∶(8÷2)=3∶4

  9∶12=(9÷3)∶(12÷3)=3∶4

  9∶12=(9÷1.5)∶(12÷1.5)=6∶8

  提问:谁能用一句话把其中的规律表达出来?

  引导学生答出:比的前项和后项都除以相同的数,比值不变。

  由此要求学生把上面两句话概括成一句话。初步归纳出:比的前项和后项都乘或者除以相同的数,比值不变。

  然后提问:比的前项和后项都乘或者除以相同的数,这里说的是不是什么数都行?乘0或者除以0可以吗?为什么?

  组织学生讨论,使他们明确:因为除以0本身没有意义,乘0使比的后项没有意义。

  最后让学生完整地归纳总结出比的基本性质。

  指导学生看书,齐读性质后,问:在比的基本性质中,你认为哪些字词是关键字词?(要求学生说出“同时”、“相同的数”、“零除外”,教师用红笔圈上。)

  3.化简比。

  教师:请大家想一想,应该怎样约分?

  指名学生回答后,板书:==.

  请大家再看一道题:一年级有学生45人,二年级有学生40人,一年级和二年级学生人数的比是多少?

  让学生集体回答,可以得到的`比是45∶40.

  指出:为了使数量间的关系更加简明,并使计算简便,我们经常要应用比的基本性质,把比化成最简单的整数比。

  然后引导学生联系最简分数的概念,使学生明确化成最简单的整数比就是把比的前后项化成互质的整数比。

  4.教学例1.

  出示题目。

  (1)化简14∶21.

  提问:这道题应用比的基本性质,应该怎样化简?

  学生比较容易想到前后项同时除以7,教师板书化简过程:14∶21=(14÷7)∶(21÷7)=2∶3,然后提问:7与14、21是什么关系呢?(7是14和21的最大公约数。)

  从而引导学生小结出整数比化简的方法:用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。

  (2)化简∶.

  提问:这个比的前、后项是什么数?(分数。)“根据比的基本性质,怎样才能把这两个分数转化成整数比?

  引导学生联系通分,想到只要比的前、后项同时乘它们分母的最小公倍数18,就可以把分数比转化成整数比,进而化简成最简单的整数比。

  师生共同叙述化简过程,教师板书:∶=(×)∶(×)=3∶4

  进一步引导学生小结出分数比化简的方法:比的前、后项同时乘它们的分母的最小公倍数,就化简成最简单的整数比。

  (3)化简1.25∶2.

  提问:怎样才能把这个小数比转化成整数比?

  让学生思考后回答,引导学生想到应用小数点向右移动相同位数的方法,可以将小数比化成整数比,然后再化简成最简单的整数比。

  方法介绍后,让学生打开教科书,将有关步骤填写在书上。完成后,再指名学生说说小数比化简的方法。

  最后,由师生共同小结一下把比化成最简单的整数比的方法,使学生明确,第一步先要利用比的基本性质,把不是整数比的化成整数比,再把比的前、后项同时除以它们的最大公约数,就得到最简单的整数比。

  5.做教科书第63页“做一做”的题目。

  让学生独立完成,教师注意巡视察看学生求最简整数比的方法。如果有的学生在化简时用的是求比值的方法,也是可以的。教师应给予鼓励。例如:∶=÷=×=.但是要提醒学生注意,最后结果必须写成最简单的整数比的形式。例如:化简∶=÷=×=,而不能将最后结果写成6.如果没有学生用这种办法,可在做完练习十七的第9题之后,再将此法介绍给学生。

  三、巩固练习

  1.做练习十二的第5题。

  先让学生独立化简第(1)题的3个比,完成后集体订正。然后做第(2)题,集体订正后再做第(3)题。

  在学生做题时,教师注意巡视,察看学生化简的方法是否正确。

  2.做练习十二的第6~8题。

  先让学生独立完成,然后集体订正。

  对于第7题中出现的不同类量的比,教师可以适当引导学生联系已学过的数量关系,说说所求的比和比值的具体含义。(所求的比和比值实际上是平均每只羊的重量。)

  3.做练习十二的第9题。

  由于化简比的方法与求比值的方法可以通用,再加上两种计算的结果在形式上有时是一致的,学生容易混淆。这里可以先让学生独立完成第9题,将结果填写在书上,教师注意察看学生的完成情况。集体订正时,教师要着重说明求比值和化简比的区别,即:求比值也就是求“商”,得到的是一个数,可以写成分数、小数,有时能写成整数;而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但不能写成带分数、小数或整数的形式。

  比的基本性质教学设计和教学反思 11

  设计思路:

  1、从学生自主学习,自主探究入手,激发学生学习的兴趣。

  2、通过自主学习、师生共同研究的学习过程,让学理解并掌握比例的基本性质,并会应用比例的基本性质正确判断两个比能否组成比例。

  教学目标:

  1、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

  2、通过自主学习,让学生经历探究的过程,体验成功的快乐。

  教学重点:

  比例的.基本性质。

  教学难点:

  应用比例的基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学过程:

  一、基本训练

  1、什么叫做比例?

  2、指出下面比例的内项和外项。

  3∶5=24∶40

  80∶2=200∶5

  二、激趣导入

  我们已经知道比例的內项和外项,您能计算一下內项和外项的积吗?

  三、自主探究

  1、计算下面比例的两个外项和两个内项的积,你发现了什么?

  3∶5=24∶4080∶2=200∶5

  板书:外项的积:340=120外项的积:805=400

  内项的积:524=120內项的积:2200=400

  340=524805=2200

  2、验证结果。

  选几个比例,计算出它的外项积和内项积。

  15∶12=10∶81.5∶0.5=3∶1

  3、讨论并明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

  4、板书课题:比例的基本性质。

  四、解释应用

  应用比例的基本性质,判断下面哪组中的两个比可以组成比例,并写出组成的比例。

  6∶3和8∶50.2∶2.5和4∶50∶=∶

  五、全课小结(略)

  附:板书设计

  比例的基本性质

  3∶5=24∶4080∶2=200∶5

  板书:外项的积:340=120外项的积:805=400

  内项的积:524=120內项的积:2200=400

  340=524805=2200

  在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

  本文标题:比的基本性质教学设计和教学反思(通用11篇)

  本文链接:http://www.hniuzsjy.cn/wenruo/87934.html